Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.833
Filtrar
1.
Braz Oral Res ; 38: e028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597547

RESUMO

Acidic pH can modify the properties of repair cements. In this study, volumetric change and solubility of the ready-to-use bioceramic repair cement Bio-C Repair (BCR, Angelus, Londrina, PR, Brazil) were evaluated after immersion in phosphate-buffered saline (PBS) (pH 7.0) or butyric acid (pH 4.5). Solubility was determined by the difference in initial and final mass using polyethylene tubes measuring 4 mm high and 6.70 mm in internal diameter that were filled with BCR and immersed in 7.5 mL of PBS or butyric acid for 7 days. The volumetric change was established by using bovine dentin tubes measuring 4 mm long with an internal diameter of 1.5 mm. The dentin tubes were filled with BCR at 37°C for 24 hours. Scanning was performed with micro-computed tomography (micro-CT; SkyScan 1176, Bruker, Kontich, Belgium) with a voxel size of 8.74 µm. Then, the specimens were immersed in 1.5 mL of PBS or butyric acid at and 37 °C for 7 days. After this period, a new micro-CT scan was performed. Bio-C Repair showed greater mass loss after immersion in butyric acid when compared with immersion in PBS (p<0.05). Bio-C Repair showed volumetric loss after immersion in butyric acid and increase in volume after immersion in PBS (p<0.05). The acidic pH influenced the solubility and dimensional stability of the Bio-C Repair bioceramic cement, promoting a higher percentage of solubility and decrease in volumetric values.


Assuntos
Óxidos , Materiais Restauradores do Canal Radicular , Animais , Bovinos , Solubilidade , Óxidos/química , Compostos de Cálcio/química , Microtomografia por Raio-X , Ácido Butírico , Teste de Materiais , Cimentos Dentários/química , Cimentos de Ionômeros de Vidro , Concentração de Íons de Hidrogênio , Silicatos/química , Materiais Restauradores do Canal Radicular/química
2.
Dent Mater J ; 43(2): 276-285, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38447980

RESUMO

Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.


Assuntos
Dimetil Sulfóxido , Osteogênese , Teste de Materiais , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Cálcio , Cimento de Silicato/química , Cimentos Dentários/farmacologia , Cimentos Dentários/química
3.
Sci Total Environ ; 925: 171762, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508270

RESUMO

Ores serve as energy and nutrient sources for microorganisms. Through complex biochemical processes, microorganisms disrupt the surface structure of ores and release metal elements. However, there is limited research on the mechanisms by which bacteria with different nutritional modes act during the leaching process of different crystal structure ores. This study evaluated the leaching efficiency of two types of bacteria with different nutritional modes, heterotrophic bacterium Bacillus mucilaginosus (BM) and autotrophic bacterium Acidithiobacillus ferrooxidans (AF), on different crystal structure lithium silicate ores (chain spodumene, layered lepidolite and ring elbaite). The aim was to understand the behavioral differences and decomposition mechanisms of bacteria with different nutritional modes in the process of breaking down distorted crystal lattices of ores. The results revealed that heterotrophic bacterium BM primarily relied on passive processes such as bacterial adsorption, organic acid corrosion, and the complexation of small organic acids and large molecular polymers with metal ions. Autotrophic bacterium AF, in addition to exhibiting stronger passive processes such as organic acid corrosion and complexation, also utilized an active transfer process on the cell surface to oxidize Fe2+ in the ores for energy maintenance and intensified the destruction of ore lattices. As a result, strain AF exhibited a greater leaching effect on the ores compared to strain BM. Regarding the three crystal structure ores, their different stacking modes and proportions of elements led to significant differences in structural stability, with the leaching effect being highest for layered structure, followed by chain structure, and then ring structure. These findings indicate that bacteria with different nutritional modes exhibit distinct physiological behaviors related to their nutritional and energy requirements, ultimately resulting in different sequences and mechanisms of metal ion release from ores after lattice damage.


Assuntos
Acidithiobacillus , Bactérias , Lítio , Bactérias/metabolismo , Metais/metabolismo , Silicatos/química , Íons
4.
J Clin Pediatr Dent ; 48(2): 93-101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38548638

RESUMO

When dental pulp is exposed, it must be covered with a biocompatible material to form reparative dentine. The material used, besides being biocompatible, should have an ideal surface structure for the attachment, proliferation and differentiation of dental pulp stem cells. This study aimed to evaluate the porosity of the microstructures of four pulp capping materials using micro-computed tomography (micro-CT). Biodentine, Bioaggregate, TheraCal and Dycal materials were prepared according to the manufacturer's instructions using 2 × 9 mm Teflon molds. A total of 60 samples, 15 in each group, were scanned using micro-CT. Open and closed pores and the total porosity of the microstructures of the materials were assessed. The findings obtained from the study were analyzed via the Kruskal-Wallis test followed by the Mann-Whitney U test. The porosity of Bioaggregate was significantly higher than that of Biodentine, Dycal and TheraCal in all porosity values. While Biodentine did not show a statistically significant difference in open and total porosity values from either TheraCal or Dycal, closed porosity values of Dycal were significantly higher than those of Biodentine and TheraCal. Because of the affinity of cells to porous surfaces, the pulp capping materials' microstructure may affect the pulp capping treatment's success. From this perspective, the use of Bioaggregate in direct pulp capping may increase the success of treatment.


Assuntos
Hidróxido de Cálcio , Capeamento da Polpa Dentária , Hidroxiapatitas , Minerais , Agentes de Capeamento da Polpa Dentária e Pulpectomia , Humanos , Capeamento da Polpa Dentária/métodos , Microtomografia por Raio-X , Porosidade , Óxidos/química , Agentes de Capeamento da Polpa Dentária e Pulpectomia/uso terapêutico , Silicatos/química , Compostos de Cálcio/química , Combinação de Medicamentos , Compostos de Alumínio/química
5.
Luminescence ; 39(3): e4698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462505

RESUMO

In this study, cerium ion (Ce3+ )-doped calcium scandium silicate garnet (Ca3 Sc2 Si3 O12 , abbreviated CSSG) phosphors were successfully synthesized using the sol-gel method. The crystal phase, morphology, and photoluminescence properties of the synthesized phosphors were thoroughly investigated. Under excitation by a blue light-emitting diode (LED) chip (450 nm), the CSSG phosphor displayed a wide emission spectrum spanning from green to yellow. Remarkably, the material exhibited exceptional thermal stability, with an emissivity ratio at 150°C to that at 25°C reaching approximately 85%. Additionally, the material showcased impressive optical performance when tested with a blue LED chip, including a color rendering index (CRI) exceeding 90, an R9 value surpassing 50, and a biological impact ratio (M/P) above 0.6. These noteworthy findings underscore the potential applications of CSSG as a white light-converting phosphor, particularly in the realm of human-centered lighting.


Assuntos
Cério , Iluminação , Humanos , Luz , Silicatos/química , Cálcio , Cério/química
6.
BMC Oral Health ; 24(1): 352, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504287

RESUMO

BACKGROUND: AH Plus, an epoxy resin-based sealer, is widely used in endodontic practice, owing to its good physical properties that confers longstanding dimensional stability and good adhesion to dentin. Nevertheless, its propensity to trigger inflammation, especially in its freshly mixed state, has been extensively documented. Phytochemicals such as Petasin, Pachymic acid, Curcumin, and Shilajit are known for their anti-inflammatory and analgesic effects. This study aimed to analyze and determine the effect of these natural products on the physical properties of AH Plus sealer when incorporated with the sealer. METHODS: AH Plus (AHR) sealer was mixed with 10% petasin, 0.75% pachymic, 0.5% and 6%shilajit to obtain AHP, AHA, AHC and AHS in the ratio of 10:1 and 5:1 respectively. Five samples of each material were assessed for setting time, solubility, flow, and dimensional stability in accordance with the ISO 6876:2012 standardization. Sealers were characterized through scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Statistical evaluation involved the Kolmogorov-Smirnov and Shapiro-Wilks tests for normality and the one-way ANOVA test for analysis. RESULTS: In this investigation, the characterisation analysis revealed a relatively similar microstructure in all the experimental root canal sealers. All experimental groups, excluding the control group, exhibited an increase in flow ranging from 11.9 to 31.4% at a 10:1 ratio. Similarly, for the 5:1 ratio, the increase ranged from 12.02 to 31.83%. In terms of dimensional stability, all groups at the 10:1 ratio showed a decrease compared to the control group. The addition of natural agents to AHR in 10:1 ratio led to a reduction in setting time by 8.9-31.6%, and at a 5:1 ratio, the reduction ranged from 8.1 to 31.5%. However, regarding solubility, the addition of natural agents did not induce any significant alterations. CONCLUSION: Based on the results of this study, it can be concluded that all tested root canal sealers exhibited properties that met the acceptable criteria outlined in the ISO 6876:2012 standardization.


Assuntos
Curcumina , Minerais , Resinas Vegetais , Materiais Restauradores do Canal Radicular , Sesquiterpenos , Triterpenos , Humanos , Materiais Restauradores do Canal Radicular/química , Curcumina/farmacologia , Resinas Epóxi , Teste de Materiais , Silicatos/química , Compostos de Cálcio/química
7.
Phys Med Biol ; 69(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529716

RESUMO

Objective. Lutetium yttrium oxyorthosilicate (LYSO) scintillation crystals are used in positron emission tomography (PET) due to their high gamma attenuation, fair energy resolution, and fast scintillation decay time. The enduring presence of the176Lu isotope, characterized by a half-life of 37.9 billion years, imparts a consistent radiation background (BG) profile that depends on the geometry and composition attributes of the LYSO crystals.Approach. In this work, we proposed a methodology for estimating the composition of LYSO crystals in cases where the exact Lutetium composition remains unknown. The connection between BG spectrum intensity and intrinsic radioactivity enables precise estimation of Lutetium density in LYSO crystal samples. This methodology was initially applied to a well-characterized LYSO crystal sample, yielding results closely aligned with the known composition. The composition estimation approach was extended to several samples of undisclosed LYSO crystals, encompassing single crystal and crystal array configurations. Furthermore, we model the background spectrum observed in the LYSO-based detector and validate the observed spectra via simulations.Main results. The estimated Lutetium composition exhibited adequate consistency across different samples of the same LYSO material, with variations of less than 1%. The result of the proposed approach coupled with the simulation successfully models the background radiation spectra in various LYSO-based detector geometries.Significance. The implications of this work extend to the predictive assessment of system behaviors and the autonomous configuration parameters governing LYSO-based detectors.


Assuntos
Lutécio , Ítrio , Lutécio/química , Tomografia por Emissão de Pósitrons/métodos , Silicatos/química
8.
PLoS One ; 19(3): e0297829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427663

RESUMO

Positron Emission Mammography (PEM) is a valuable molecular imaging technique for breast studies using pharmaceuticals labeled with positron emitters and dual-panel detectors. PEM scanners normally use large scintillation crystals coupled to sensitive photodetectors. Multiple interactions of the 511 keV annihilation photons in the crystals can result in event mispositioning leading to a negative impact in radiopharmaceutical uptake quantification. In this work, we report the study of crystal scatter effects of a large-area dual-panel PEM system designed with either monolithic or pixelated lutetium yttrium orthosilicate (LYSO) crystals using the Monte Carlo simulation platform GATE. The results show that only a relatively small fraction of coincidences (~20%) arise from events where both coincidence photons undergo single interactions (mostly through photoelectric absorption) in the crystals. Most of the coincidences are events where at least one of the annihilation photons undergoes a chain of Compton scatterings: approximately 79% end up in photoelectric absorption while the rest (<1%) escape the detector. Mean positioning errors, calculated as the distance between first hit and energy weighted (assigned) positions of interaction, were 1.70 mm and 1.92 mm for the monolithic and pixelated crystals, respectively. Reconstructed spatial resolution quantification with a miniDerenzo phantom and a list mode iterative reconstruction algorithm shows that, for both crystal types, 2 mm diameter hot rods were resolved, indicating a relatively small effect in spatial resolution. A drastic reduction in peak-to-valley ratios for the same hot-rod diameters was observed, up to a factor of 14 for the monolithic crystals and 7.5 for the pixelated ones.


Assuntos
Elétrons , Lutécio , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Silicatos/química , Mamografia , Fótons
9.
Geobiology ; 22(1): e12587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385601

RESUMO

Chemical sedimentary deposits called Banded Iron Formations (BIFs) are one of the best surviving records of ancient marine (bio)geochemistry. Many BIF precursor sediments precipitated from ferruginous, silica-rich waters prior to the Great Oxidation Event at ~2.43 Ga. Reconstructing the mineralogy of BIF precursor phases is key to understanding the coevolution of seawater chemistry and early life. Many models of BIF deposition invoke the activity of Fe(II)-oxidizing photoautotrophic bacteria as a mechanism for precipitating mixed-valence Fe(II,III) and/or fully oxidized Fe(III) minerals in the absence of molecular oxygen. Although the identity of phases produced by ancient photoferrotrophs remains debated, laboratory experiments provide a means to explore what their mineral byproducts might have been. Few studies have thoroughly characterized precipitates produced by photoferrotrophs in settings representative of Archean oceans, including investigating how residual Fe(II)aq can affect the mineralogy of expected solid phases. The concentration of dissolved silica (Si) is also an important variable to consider, as silicate species may influence the identity and reactivity of Fe(III)-bearing phases. To address these uncertainties, we cultured Rhodopseudomonas palustris TIE-1 as a photoferrotroph in synthetic Archean seawater with an initial [Fe(II)aq ] of 1 mM and [Si] spanning 0-1.5 mM. Ferrihydrite was the dominant precipitate across all Si concentrations, even with substantial Fe(II) remaining in solution. Consistent with other studies of microbial iron oxidation, no Fe-silicates were observed across the silica gradient, although Si coprecipitated with ferrihydrite via surface adsorption. More crystalline phases such as lepidocrocite and goethite were only detected at low [Si] and are likely products of Fe(II)-catalyzed ferrihydrite transformation. Finally, we observed a substantial fraction of Fe(II) in precipitates, with the proportion of Fe(II) increasing as a function of [Si]. These experimental results suggest that photoferrotrophy in a Fe(II)-buffered ocean may have exported Fe(II,III)-oxide/silica admixtures to BIF sediments, providing a more chemically diverse substrate than previously hypothesized.


Assuntos
Compostos Férricos , Ferro , Ferro/química , Dióxido de Silício , Archaea , Minerais , Oxirredução , Silicatos/química , Compostos Ferrosos
10.
J Oral Sci ; 66(2): 96-101, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38325857

RESUMO

PURPOSE: This study evaluated the dentin bonding strength and biomineralization effect of a recently developed premixed calcium aluminate-based endodontic sealer (Dia-Root Bio Sealer) in comparison with existing calcium silicate-based sealers. METHODS: The root canals of 80 mandibular premolars were filled with Dia-Root Bio Sealer, Endoseal MTA, EndoSequence BC Sealer, and AH Plus Bioceramic Sealer. Medial and apical specimens were then obtained by sectioning. The push-out bond strength was measured using the medial specimens, and the failure mode was recorded. Intratubular biomineralization in the apical specimens was analyzed using scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDS). The data were analyzed using one-way analysis of variance followed by the Tukey test (P < 0.05). RESULTS: The push-out bond strength of Dia-Root Bio Sealer was significantly higher than that of the other tested materials, and a cohesive failure pattern was observed in all groups. Dia-Root Bio Sealer also exhibited a significantly higher degree of biomineralization than the other groups, and EDS analysis indicated that the biomineralized precipitates were amorphous calcium phosphate. CONCLUSION: The results of this study indicate that Dia-Root Bio Sealer has the potential to be used as an adequate root canal sealer due to its favorable bonding performance.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Colagem Dentária , Materiais Restauradores do Canal Radicular , Materiais Restauradores do Canal Radicular/química , Resinas Epóxi/química , Resinas Epóxi/farmacologia , Biomineralização , Colagem Dentária/métodos , Teste de Materiais , Dentina , Silicatos/química
11.
PLoS One ; 19(1): e0296647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232127

RESUMO

This study aimed to evaluate the dislodgement resistance and structural changes of different mineral trioxide aggregate cements (MTA) like Pro-Root MTA, Ortho MTA, and Retro MTA after exposure to sodium hypochlorite (NaOCl), NaOCl-Ethylenediaminetetraacetic acid (EDTA), 1-hydroxyethylidene-1, 1-bisphosphonate (Dual Rinse HEDP), and NaOCl-Maleic acid (MA). The root canal spaces of 150 dentine slices were obturated using tricalcium silicate cements and divided into 3 groups (n = 50): Group1: ProRoot MTA, Group2: Retro MTA, and Group3: Ortho MTA. The samples in each group were further subdivided into four experimental (n = 10) and one control groups (n = 10): 2.5% NaOCl-17% EDTA, Dual Rinse HEDP, 2.5% NaOCl-7% Maleic acid, 2.5% NaOCl, distilled water (control). The dislodgement resistance and structural changes of cements were measured. Use of DR HEDP resulted in higher dislodgement resistance compared to17% EDTA and 7% MA in the samples obturated with Ortho MTA and Pro-Root MTA (p<0.001). In Retro MTA group, samples treated with DR HEDP and 17% EDTA had higher dislodgment resistance compared to 7% MA (p<0.001). On microstructural and elemental analysis of all the three MTA cements, samples treated with 17% EDTA and 7% MA were more amorphous and granular when compared to DR HEDP, which was pettle shaped. Calcium level was decreased more in samples treated with 17% EDTA and 7% MA when compared to DR HEDP.


Assuntos
Quelantes , Ácido Etidrônico , Maleatos , Quelantes/farmacologia , Ácido Edético/farmacologia , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Combinação de Medicamentos , Óxidos/farmacologia , Óxidos/química
12.
Chemosphere ; 350: 141048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182084

RESUMO

The complexation of uranyl hydroxides with orthosilicic acid was investigated by experimental and theoretical methods. Spectroluminescence titration was performed in a glovebox under argon atmosphere at pH 9.2, 10.5 and 11.5, with [U(VI)] = 10-6 and 5 × 10-6 mol kgw-1. The polymerization effects of silicic acid were minimized by ruling out samples with less than 90 % monomeric silicic acid present, identified via UV-Vis spectrometry using the molybdate blue method. Linear regression analysis based on time-resolved laser-induced fluorescence spectroscopy (TRLFS) results yielded the conditional stepwise formation constants of U(VI)-OH-Si(OH)4 complexes at 0.05 mol kgw-1 NaNO3. The main spectroscopic features - characteristic peak positions and decay-time - are reported for the first time for the UO2(OH)2SiO(OH)3- species observed at pH 9.2 and 10.5 and UO2(OH)2SiO2(OH)22- predominant at pH 11.5. Quantum chemical calculations successfully computed the theoretical luminescence spectrum of the complex UO2(OH)2SiO(OH)3- species, thus underpinning the proposed chemical model for weakly alkaline systems. The conditional stability constants were extrapolated to infinite dilution using the Davies equation, resulting in log10ß°(UO2(OH)2SiO(OH)3-) and log10ß°(UO2(OH)2SiO2(OH)22-). Implications for U(VI) speciation in the presence and absence of competing carbonate are discussed for silicate-rich environments expected in certain repository concepts for nuclear waste disposal.


Assuntos
Dióxido de Silício , Urânio , Ácido Silícico , Urânio/química , Silicatos/química , Análise Espectral
13.
J Mech Behav Biomed Mater ; 151: 106400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262184

RESUMO

AIM: To mensure the physicochemical properties of three ceramic cement endodontic sealers AH Plus Bioceramic, Bio-C Sealer and Bio-C Sealer Ion+ with an epoxy resin sealer, AH Plus. MATERIAL AND METHODS: These properties were measured: hardening time (HT), dimensional change (DC), solubility (SL), flow (FL) and radiopacity (RD). The distilled water obtained from the SL test was analyzed with atomic absorption spectrometry. A sample calculation was made considering n = 5 repetitions for each experimental sealer evaluated. Statistical analysis was performed using one-way ANOVA and post hoc Tukey tests (p < 0.05). RESULTS: For the HT, AH Plus (484 ± 2.76 min) and AH Plus Bioceramic (424 ± 1.23 min) set more slowly than of Bio-C Sealer (370 ± 4.50 min) and Bio-C Sealer Ion+ (380 ± 1.42 min) (p < 0.05). AH Plus Bioceramic (12.56 ± 2.71 %) was more soluble than Bio-C Sealer (6.69 ± 1.67 %), Bio-C Sealer Ion+ (5.67 ± 2.16 %) and AH Plus (0.15 ± 0.01 %) (p < 0.05). AH Plus (0.03 ± 0.01 %) had slight expansion while the cement-based sealers had shrinkage: AH Plus Bioceramic (-1.60 ± 0.63 %) and Bio-C Sealer (-1.38 ± 0.69 %), Bio-C Sealer Ion+ (-5.19 ± 1.23 %) (p < 0.05). Bio-C Sealer Ion+ (59.80 ± 0.86 mm) and Bio-C Sealer (58.60 ± 0.98 mm) had the highest flow compared with AH Plus (56.90 ± 0.56 mm) and AH Plus Bioceramic (49.50 ± 0.63 mm) (p < 0.05). AH Plus (9.17 ± 0.06 mmAl) and AH Plus Bioceramic (8.27 ± 0.84 mmAl) showed radiopacity values when compared with those of Bio-C Sealer (4.90 ± 0.08 mmAl) and Bio-C Sealer Ion+ (4.14 ± 0.05 mmAl) (p > 0.05). CONCLUSION: Ion release is inhered to these cement-based sealers and this result in calcium ion release.


Assuntos
Cálcio , Materiais Restauradores do Canal Radicular , Cálcio/química , Materiais Restauradores do Canal Radicular/química , Compostos de Cálcio/química , Resinas Epóxi/química , Silicatos/química , Teste de Materiais
14.
J Endod ; 50(3): 381-388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219956

RESUMO

INTRODUCTION: A number of sealers with different chemistries are badged as Bioceramic, implying biological activity, but have dissimilar properties, which has implications on the sealer properties and will affect the quality and outcome of root canal treatment. This study aimed to assess the physical and chemical properties of 3 hydraulic cement-based sealers, namely BC Universal sealer compared with Totalfill BC sealer and AH Plus Bioceramic. METHODS: The microstructure and composition of the sealers were assessed using scanning electron microscopy and energy dispersive spectroscopy after setting. The crystalline phases were assessed by X-ray diffraction analysis and the leachates were tested using inductively coupled plasma. All testing was performed at 0, 7, and 28 days. The physical properties of film thickness, flow, radiopacity, and solubility were evaluated using ISO 6876:2012 standards. RESULTS: All 3 sealers contained calcium, zirconium, and silicon. Totalfill BC had the highest calcium release at 7 and 28 days followed by AH Plus Bioceramic and BC Universal sealer. All 3 sealers adhered to the ISO standard in terms of flow and radiopacity. BC Universal sealer was slightly over the range (>50 µm) for film thickness. All sealers exceeded the solubility range set by ISO 6876:2012. CONCLUSION: Although these hydraulic cement sealers had similar components and delivery, the properties varied significantly. The testing of material properties to confirm the suitability for clinical use is necessary.


Assuntos
Materiais Restauradores do Canal Radicular , Materiais Restauradores do Canal Radicular/química , Resinas Epóxi/química , Cálcio , Compostos de Cálcio/química , Seringas , Teste de Materiais , Cimentos Dentários , Cimentos de Ionômeros de Vidro , Silicatos/química
15.
Head Face Med ; 20(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172921

RESUMO

BACKGROUND: The aim of this study was to evaluate the physicochemical properties of two newly introduced premixed calcium silicate-based root canal sealers (AH Plus Bioceramic Sealer and Bio-C Sealer) compared to a resin-based root canal sealer (ADseal root canal sealer). METHODS: Solubility, pH analysis, calcium ion release, and film thickness of each sealer were evaluated following ISO guidelines. The data were examined using the two-way ANOVA test. Furthermore, X-ray diffraction (XRD) examination was performed to investigate the crystalline phase of each type of sealer. X-ray fluorescence (XRF) analysis was done for the chemical elemental analysis of each sealer. RESULTS: The least film thickness, highest alkalinity, and highest calcium ion release were all displayed by AH Plus Bioceramic Sealer. High solubility, high alkalinity, intermediate calcium ion release, and intermediate film thickness were all displayed by Bio-C Sealer. While ADseal root canal sealer displayed the greatest film thickness, least solubility, alkalinity, and calcium ion release. CONCLUSIONS: Both AH Plus Bioceramic Sealer and Bio-C Sealer represented adequate properties to be considered a good sealer that could be used as a potential alternative to resin-based root canal sealers.


Assuntos
Cálcio , Materiais Restauradores do Canal Radicular , Humanos , Cálcio/química , Cavidade Pulpar , Materiais Restauradores do Canal Radicular/química , Resinas Epóxi/química , Compostos de Cálcio/química , Silicatos/química , Teste de Materiais
16.
Dent Mater ; 40(2): 267-275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989699

RESUMO

OBJECTIVES: The aim of this work is to test experimental cements, doped with a silicate based bioactive nanoparticle (NanoBiosilicate). Methods, we synthesized a glass nanoparticle by Sol-Gel Stöber method, used to be incorporated in a dental material for endodontic uses. MATERIALS AND METHODS: We assess the mineralizing properties and biocompatibility. Besides the crystallography characterization of the resultant new crystals. Results, After analysis, and comparison with commercial materials, the material tested was similar in mechanical properties required by ISO, The ion release was effective after 2 hr. of setting and the novel material was cell compatible accepted by ISO. RESULTS: We found new formed Calcium Phosphate peaks in the spectroscopic analysis (FTIR), remarkably the crystals formed were comparable to hydroxyapatite when analyzed with a Selected Area Electron Diffractometer, with rings of 2.84 Å for 002, and the 2.77 Å is also visible for 210. The 6.83 Å and 6.88 Å, for respective 222 and 004. The incorporation of Chlorhexidine was not detrimental for this property, Significance, the features mentioned represented a progress in biomineralization field that was associated to an improved mineral structure formation with increased crystallographic similarity to natural hydroxyapatite. When chlorhexidine was added a favorable biomodification of the remaining collagen in dentinal walls and antimicrobial activity potential were also observed.


Assuntos
Compostos de Cálcio , Durapatita , Compostos de Cálcio/química , Clorexidina/farmacologia , Cristalografia , Biomineralização , Teste de Materiais , Fosfatos de Cálcio/química , Silicatos/química , Colágeno
17.
J Endod ; 50(2): 235-242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995904

RESUMO

INTRODUCTION: This study aimed to assess the biocompatibility and bioactivity of a dual-cured resin-based calcium silicate cement in vitro and in vivo. METHODS: For in vitro analyses, standardized samples were prepared using TheraCal LC, TheraCal PT, and ProRoot MTA. The amount of residual monomer released from TheraCal LC and TheraCal PT was assessed using liquid chromatography/mass spectrometry. Calcium ion release from the materials was evaluated using inductively coupled plasma-optical emission spectroscopy. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to determine the calcium weight volume in the materials. For in vivo analysis, a rat direct pulp capping model with TheraCal LC, TheraCal PT, and ProRoot MTA groups (n = 16 per group) was used. The rats were euthanized after 7 or 28 days, and histological and immunohistochemical analyses (CD68 and DSPP) were performed. RESULTS: Bisphenol A-glycidyl methacrylate and polyethylene glycol dimethacrylate release from TheraCal PT was lower than that from TheraCal LC (P < .05). Similar results were obtained for calcium-ion release and calcium weight volume, with ProRoot MTA showing the highest values. In the in vivo evaluation, TheraCal PT showed significantly greater hard tissue formation than TheraCal LC (P < .017). TheraCal PT showed lower CD68 expression and greater DSPP expression than TheraCal LC (P < .017). There were no significant differences in the expression of CD68 or DSPP between the TheraCal PT and ProRoot MTA groups. CONCLUSIONS: Within the limitations of this study, the biocompatibility and bioactivity of TheraCal PT could be comparable to those of ProRoot MTA.


Assuntos
Compostos de Cálcio , Cálcio , Ratos , Animais , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Óxidos/farmacologia , Óxidos/química , Combinação de Medicamentos , Cimento de Silicato/química , Compostos de Alumínio/farmacologia , Compostos de Alumínio/química , Teste de Materiais
18.
Chempluschem ; 89(1): e202300370, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37767728

RESUMO

Nowadays the use of hydrogels for biomedical purposes is increasing because of their interesting features that allow the development of targeted drug delivery systems. Herein, hydrogel based on Laponite® (Lap) clay mineral as gelator and cucurbit[6]uril (CB[6]) molecules were synthetized for the delivery of flufenamic acid (FFA) for potential topical application. Firstly, the interaction between CB[6] and FFA was assessed by UV-vis spectroscopic measurements and molecular modeling calculations. Then, the obtained complex was used as filler for Lap hydrogel (Lap/CB[6]/FFA). The properties of the hydrogel in terms of viscosity and, self-repair abilities were investigated; its morphology was imaged by scanning electron and polarized optical microscopies. Furthermore, the changes in the hydrodynamic radii and in the colloidal stability of CB[6]/Lap mixture were investigated in terms of translational diffusion from dynamic light scattering and ζ-potential measurements. Finally, the kinetic in vitro release of FFA, from Lap/CB[6]/FFA hydrogel, was studied in a medium mimicking the pH of skin and the obtained results were discussed both by an experimental point of view and by molecular modeling calculations.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Hidrogéis/química , Sistemas de Liberação de Medicamentos/métodos , Silicatos/química
19.
Dent Mater ; 40(3): 387-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103958

RESUMO

INTRODUCTION: Biological characterization of root canal sealers is important as it assesses the ability of the root canal sealer to exert antimicrobial properties thus avoiding treatment failures caused by microbial challenge and also assess the cytotoxic effect on the periapical tissues. Assessment of the biological testing of root canal sealers necessitates the sterilisation of the materials prior to evaluation. This study aims to analyse the influence of various sterilisation techniques conducted prior to biological testing on the microstructure and surface properties of endodontic sealers. Assessment of the initial microbial contamination on the material was also undertaken. METHODS: Four commercial sealers were investigated. The sealers were either prepared in a laminar flow cabinet or on a laboratory bench top under ambient conditions. Each group was further divided into 5 groups (n = 3) based on the sterilization technique:1) ethanol-10 mins, 2) ultraviolet-1 h, 3) ethanol-10 mins + ultraviolet-1 h, 4) autoclave, and 5) no sterilisation (control). Microbial levels in the materials were assessed by plate streaking technique. The materials were characterized by scanning electron microscopy and energy dispersive spectroscopy, and Fourier transform infrared spectroscopy, before and after sterilisation, to assess any changes in microstructure and chemical composition. RESULTS: All the materials did not exhibit contamination when prepared in laminar flow chamber in sterile conditions compared with sealers prepared on the bench top. Three of the commercial materials showed changes in microstructure while one (TotalFill) was not affected by the sterilisation. AH Plus and BioRoot RCS exhibited alterations in water and alcohol peaks in FT-IR while the single syringe sealers (TotalFill and BioRoot Flow) showed no changes. CONCLUSIONS: Sterilisation methods cause physical and chemical alterations to sealers. Material preparation should be performed in a laminar flow cabinet and a test for sterility should be performed prior to any biological testing being undertaken. If the materials are not sterile, assessment of the effects of the sterilization methods is recommended.


Assuntos
Materiais Restauradores do Canal Radicular , Resinas Epóxi/química , Guta-Percha/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cavidade Pulpar , Compostos de Cálcio/química , Teste de Materiais , Etanol , Silicatos/química
20.
Dent Mater ; 40(3): 420-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123383

RESUMO

OBJECTIVES: Final root canal irrigation should ideally maintain the physicochemical stability of root canal sealers. We seek to assess the effect of contact with 2% chlorhexidine digluconate (CHX) on the physicochemical properties of AH Plus, BioRoot™ RCS, and Pulp Canal Sealer (PCS). METHODS: Mixed sealers were placed in cylindrical teflon molds and allowed to set for 1.5x the manufacturers' setting time. Half of the specimens had their free surface in contact with CHX for the first minute of their setting period. Solubility, radiopacity, surface roughness, microhardness and wettability of the sealers were assessed up to 28 days after setting. Elemental analysis of sealer surfaces and their leachates together with pH measurements were also performed. Appropriate parametric and non-parametric analysis with post hoc tests were performed (p < 0.05). RESULTS: Exposure to CHX had no effect on solubility and radiopacity of all sealers. CHX altered the surface roughness of PCS and BioRoot RCS (p < 0.05). Contact with CHX reduced the microhardness of AH Plus and PCS (p < 0.05). AH Plus was more hydrophilic after CHX contact, whereas PCS became more hydrophobic (p < 0.05). AH Plus and PCS surfaces appeared to adsorb CHX as exhibited by chlorine peaks after contact with CHX. Sealer leachates' alkalinity was not affected. CHX increased elution of silicon and zirconium for BioRoot and zinc for PCS leachates. SIGNIFICANCE: In our study, CHX affected sealers' physicochemical properties to various extents. Further studies are needed to confirm the obtained results by investigating various final irrigation strategies and correlating to biological properties.


Assuntos
Clorexidina/análogos & derivados , Materiais Restauradores do Canal Radicular , Resinas Epóxi/química , Teste de Materiais , Silicatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...